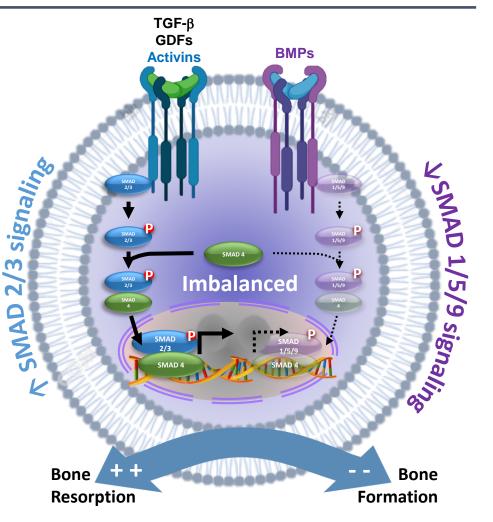
KER-012, A Modified ActRIIB Ligand Trap, Administered to Healthy Postmenopausal Women Was Generally Well Tolerated and Increased Biomarkers of Bone Formation, Supportive of A Bone Anabolic Mechanism (P1053)

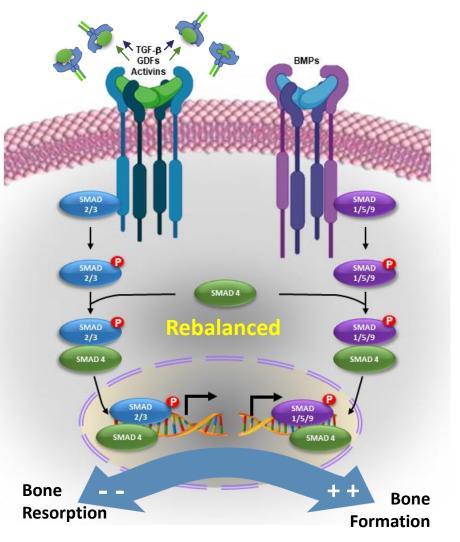
Harveen Natarajan¹, Sylvain Bedard¹, Richard Friend², Ying Jiang¹, Jennifer Lachey¹, Jasbir Seehra¹, Enrikas Vainorius¹, Simon Cooper¹


¹Keros Therapeutics, Lexington, MA, USA ²Nucleus Network, Brisbane, AUS

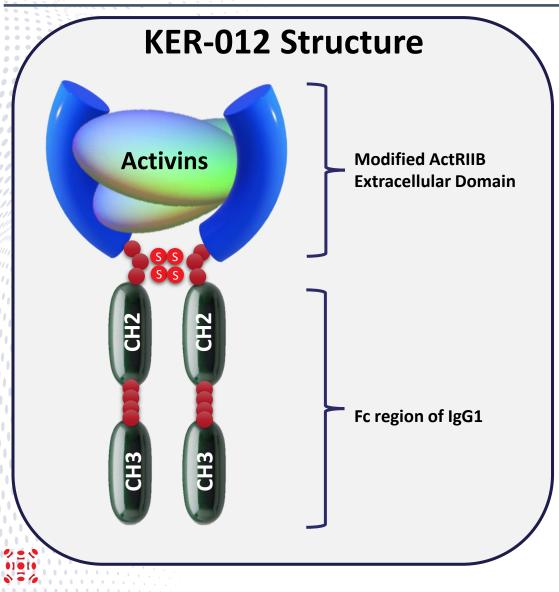
Disclosures

- Harveen Natarajan, Ying Jiang, Jennifer Lachey, Jasbir Seehra, Enrikas Vainorius and Simon Cooper are employees of and security holders in Keros Therapeutics, Inc.
- Sylvain Bedard is engaged as an independent contractor for Keros Therapeutics, Inc.
- Richard Friend no disclosures

Dysregulated TGF- β Superfamily Signaling Underlies Bone Loss Associated With Multiple Disease States


- Transforming growth factor-beta (TGF- β) superfamily ligands regulate bone remodeling and growth
 - Activins: promote osteoclasts, inhibit osteoblast formation and mineralization activity via SMAD 2/3 signaling¹
 - Bone morphogenetic proteins (BMP): promote bone formation via SMAD 1/5/9 signaling²
- Activin signaling is increased in aging, cardiac diseases, cancer and disorders that result in bone loss (e.g., pulmonary arterial hypertension, chronic kidney disease)³⁻⁵

1. Lodberg A. Cytokine and Growth Factor Reviews (2021); 60:1-17; 2. Bharadwaz A. *Mater Sci Eng C Mater Biol Appl* (2021): 111748. doi:10.1016/j.msec.2020.111748; 3. Roh *et al., Sci. Transl. Med.* 11, eaau8680 (2019); 4. Bian X, *et al. BMJ Open Diab Res Care*2019;7:e000720. doi:10.1136/bmjdrc-2019-000720; 5. Ries A. *Exp Opin Ther Targets*. (2020); 24(10):985–996


Proof of Concept Established for Targeting TGF- β Superfamily in Diseases Characterized by Bone Loss

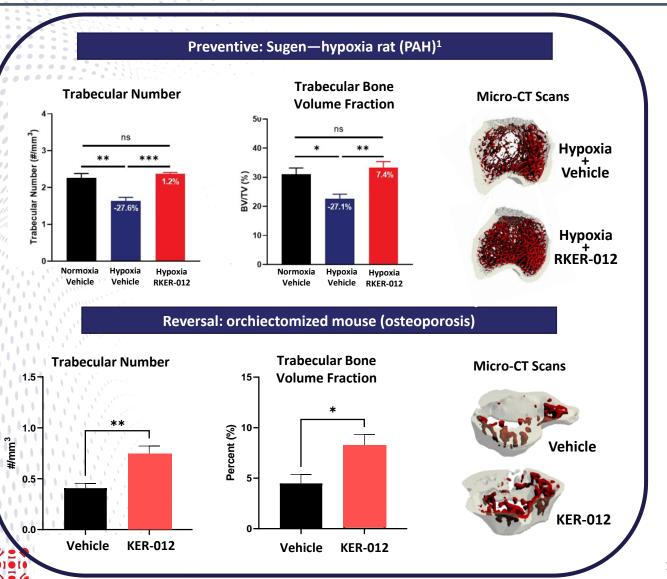
- Pharmacologic inhibition of activin signaling has been shown to reverse bone loss in multiple myeloma¹ and neuromuscular diseases²
- Investigational activin receptor (ActR) ligand traps have been shown to increase bone mineral density in postmenopausal women³
 - Accompanied by a rapid and sustained increase in RBC that required halting of further dosing
- Demonstrated POC in patients with pulmonary arterial hypertension (PAH)⁴
 - Dosing in PAH has been limited to low doses due to potential for increased hemoglobin³
 - Limited target engagement at low doses may prevent full benefit

1.Abdulkadyrov et al. British Journal of Haematology, 2014, 165, 814–8231. 2.Campbell et. al. Muscle and Nerve 2017 Apr;55(4):458-464.; 3.Sherman et al 2013 The Journal of Clinical Pharmacology 4

KER-012: A Novel, Investigational Activin Receptor Type IIB Ligand Trap

 Designed to inhibit TGF-β superfamily ligands with specificity for activins to:

In vitro hinding accave¹

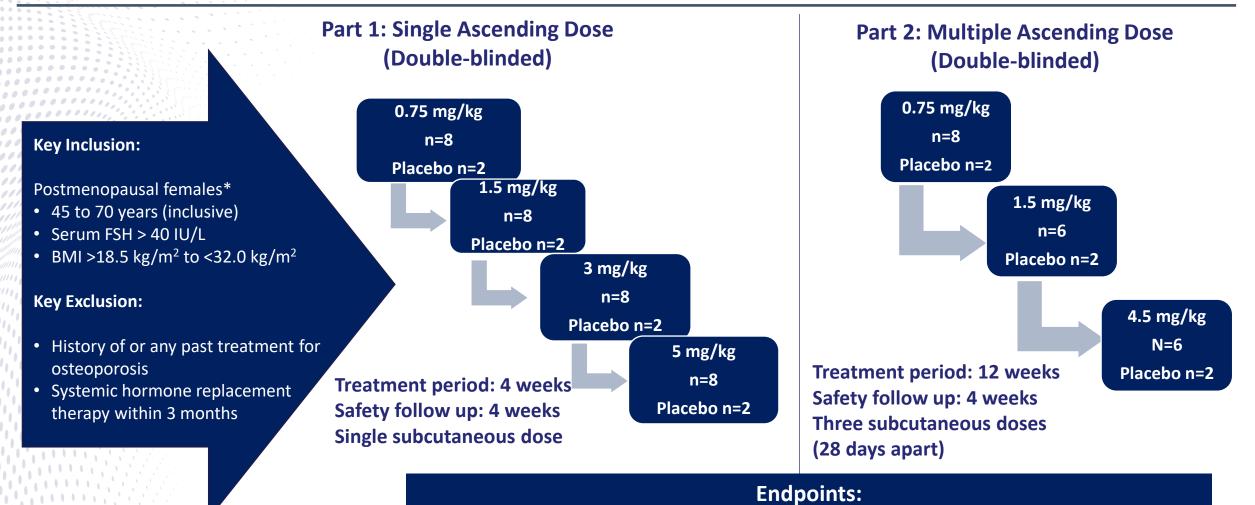

- Maximally inhibit SMAD 2/3 signaling via activins
- Permit SMAD 1/5/9 signaling via BMPs

m vitro binding assays									
	K _D (pM)								
	Activin A	Activin B	GDF-11	BMP-9					
KER-012	120	132	77	30,000					

Designed to lack effect on erythropoiesis

1. Babbs K, *et al.*, Pulmonary Hypertension Association Int. Conference 2022; GDF-11 = Growth differentiation factor 11; BMP-9 = bone morphogenetic protein 9

KER-012 Not Only Prevented, But Reversed Bone Loss in Multiple Preclinical Models of Bone Dysfunction


P value *<0.05, **<0.01, ***<0.001; ns= non significant; RKER = Research KER-012

KER-012 administration increased trabecular bone in multiple preclinical models of bone loss:

- Prevented bone loss in a Sugen-hypoxia model of PAH, as evidenced by normalization of trabecular number and bone volume fraction (top panels)¹
- Reversed bone loss in orchiectomized mice as evidenced by increased trabecular number and bone volume fraction (bottom panels)
- Taken together, these observations support exploring potential effects of KER-012 on bone remodeling in humans

1. Materna C et al., Am Society Bone Mineral Res 2021 Annual Meeting. Sept 9-12, 2021 6

Phase 1 Trial of KER-012 in Healthy Postmenopausal Women

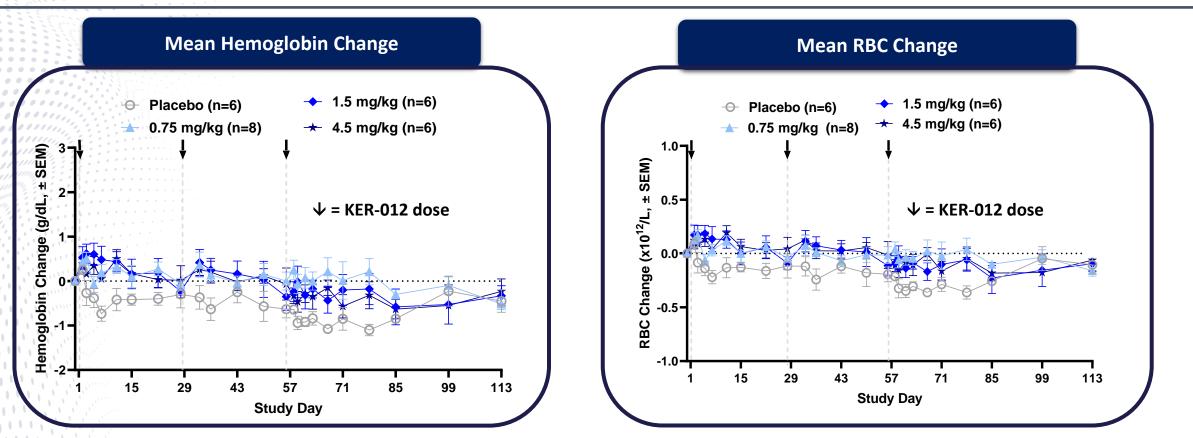
Safety, PK, PD (including serum biomarkers of bone formation & resorption)

Demographics and Disposition (Part 1 SAD)

	PBO (N=8)	0.75 mg/kg (N=8)	1.5 mg/kg (N=8)	3.0 mg/kg (N=8)	5.0 mg/kg (N=8)	All Subjects (N=40)
Age, years mean (range)	56.0 (48 – 60)	58.3 (52 -70)	54.9 (50 - 59)	57.8 (50 - 66)	59.3 (53 - 68)	57.2 (48 - 70)
Race, n (%) White Multiple ^{&}	8 (100) 0	8 (100) 0	8 (100) 0	7 (87.5) 1 (12.5)	8 (100) 0	39 (97.5) 1 (2.5)
Weight, kg mean (SD)	68.4 (10.09)	71.6 (9.60)	67.5 (8.05)	68.1 (9.49)	67.1 (10.35)	68.6 (9.19)
FSH, IU/L mean (SD) [range] at Screening at C1D1	88.9 (16.34) [62, 107] 70.4 (28.91) [18, 105]	75.5 (19.87) [56, 112] 53.3 (28.16) [26, 103]	95.0 (22.93) [64, 133] 86.5 (16.64) [64, 109]	77.9 (26.31) [60, 127] 49.5 (23.65) [21, 92]	91.0 (35.02) [45, 146] 87.1 (35.49) [63, 162]	85.6 (25.02) [45, 146] 68.9 (30.18) [18, 162]
%chg from SCRN	-16.9 (35.65) [-83.2, 11.9]	-31.9 (23.02) [-58.3, 1.1]	-7.7 (8.78) [-18.3, 7.1]	-33.3 (24.57) [-83.5, 2.6]	4.4 (17.71) [-17.0, 40.0]	-17.7 (26.38) [-83.5, 40.0]
Disposition						
Completed Study, n (%)	8 (100%)	8 (100%)	7 (87.5%)	8 (100%)	8 (100%)	39 (97.5)
Discontinuation, n (%)	0	0	1# (12.5%)	0	0	1# (2.5)

& More than one race was reported.

💊 ቐ 🅢 # 1 subject prematurely discontinued after receiving KER-012 due to withdrawal of consent.

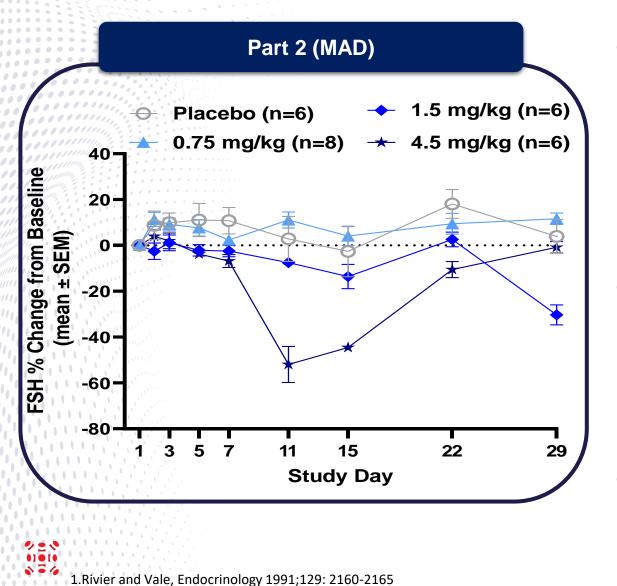

Demographics and Disposition (Part 2 MAD)

	PBO (N=6)	0.75 mg/kg (N=8)	1.5 mg/kg (N=6)	4.5 mg/kg (N=6)	All Subjects (N=26)
Age, years mean (range)	59.5 (51 – 68)	59.1 (52 – 65)	55.7 (52 – 59)	61.2 (52 – 71)	58.9 (51 – 71)
Race, n (%) White Asian Australian Aborigine or Torres Strait Islander	6 (100.0) 0 0	7 (87.5) 1 (12.5) 0	5 (83.3) 0 1 (16.7)	6 (100.0) 0 0	24 (92.3) 1 (3.8) 1 (3.8)
Weight, kg mean (SD)	68.2 (12.20)	67.8 (7.02)	71.0 (9.05)	71.9 (12.08)	69.6 (9.61)
FSH, IU/L mean (SD) [range] at Screening at C1D1	80.7 (17.50) [59, 108] 82.8 (20.29) [51, 114]	69.3 (40.52) [41, 164] 65.4 (28.75) [40, 126]	82.7 (32.01) [42, 121] 80.7 (23.65) [52, 116]	92.5 (32.65) [48, 137] 83.8 (21.40) [61, 119]	80.3 (31.86) [41, 1 77.2 (24.15) [40, 1
%chg from SCRN	5.8 (34.66) [-26, 73]	-1.5 (12.94) [-23, 12]	1.7 (14.34) [-19, 24]	-4.5 (23.81) [-19, 44]	0.2 (21.35) [-26, 7
Disposition					
Completed Study, n (%)	5 (83.3)	8 (100.0)	5 (83.3)	6 (100.0)	24 (92.3)
Discontinuation, n (%)	1 (16.7) ^{&}	0	1 (16.7)#	0	2 (7.7) ^{& #}

KER-012 was Generally Well Tolerated after Single and Repeated Dosing

Part 1: Single Ascending Dose					Part 2: Multiple Ascending Doses				
		KER-012 Dose (mg/kg)				KER-012 Dose (mg/kg)			
Adverse Event	PBO (N = 8)	0.75 (N = 8)	1.5 (N = 8)	3.0 (N = 8)	5.0 (N = 8)	PBO (N = 6)	0.75 (N = 8)	1.5 (N = 6)	4.5 (N = 6)
Any TEAE	6 (75%)	7 (87.5%)	3 (37.5%)	6 (75%)	3 (37.5%)	6 (100%)	5 (62.5%)	5 (83.3%)	6 (100%)
Any SAE	-	-	-	-	-	1 (16.7%)	-	-	-
Injection site erythema	-	1 (12.0%)	-	2 (25.0%)	-	-	2 (25.0%)	3 (50.0%)	4 (66.7%)
Headache	1 (12.0%)	2 (25.0%)	-	-	1 (12.5%)	2 (33.3%)	2 (25.0%)	1 (16.7%)	2 (33.3%)
Back pain	2 (25.0%)	-	1 (12.5%)	3 (37.5%)	-	-	-	1 (16.7%)	-
COVID-19	-	-	-	-	1 (12.5%)	-	-	1 (16.7%)	1 (16.7%)
Diarrhoea	1 (12.0%)	-	-	1 (12.5%)	1 (12.5%)	-	-	-	-
Pain in extremity	-	-	-	1 (12.5%)	-	1 (16.0%)	-	-	1 (16.7%)

1. AE occurring in > 3 participants combined, 2. Data shown as count and (percent) of participants reporting AE, 3. Data as of Aug 4, 2022

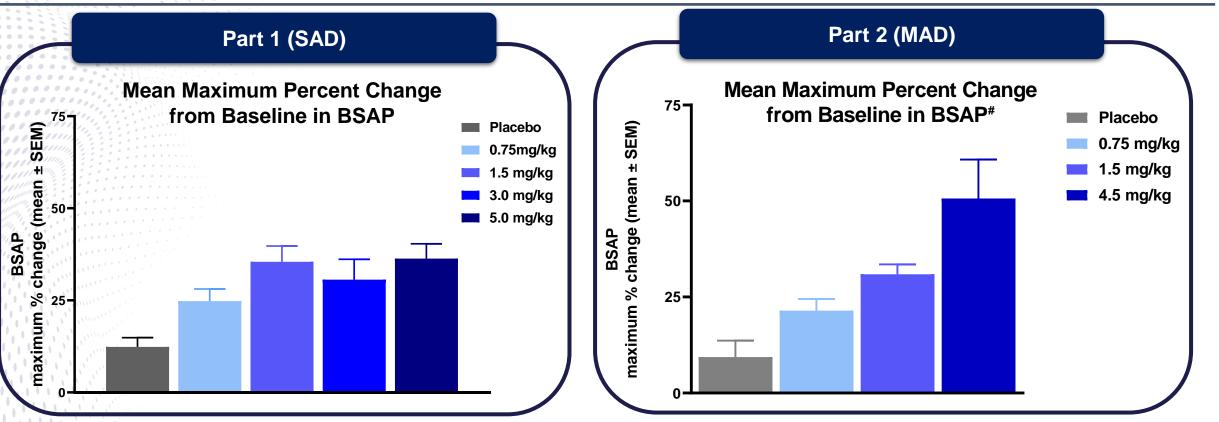

Multiple Doses of KER-012 Did Not Elicit Changes in Erythropoiesis

• Treatment with three doses of KER-012 at 28-day intervals did not elicit changes in hemoglobin or red blood cells

• The lack of effect on erythropoiesis in humans was consistent with lack of effect in multiple preclinical models^{1,2}

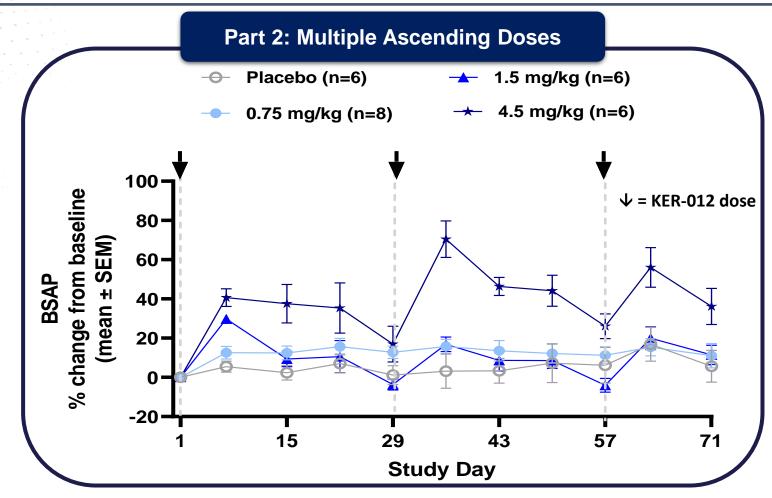
1. Babbs K, et al. American Thoracic Society 2021 Annual Meeting; 2. Babbs K, et al. American Thoracic Society 2022 Annual Meeting

KER-012 Elicited Dose-Dependent Reductions in Serum FSH

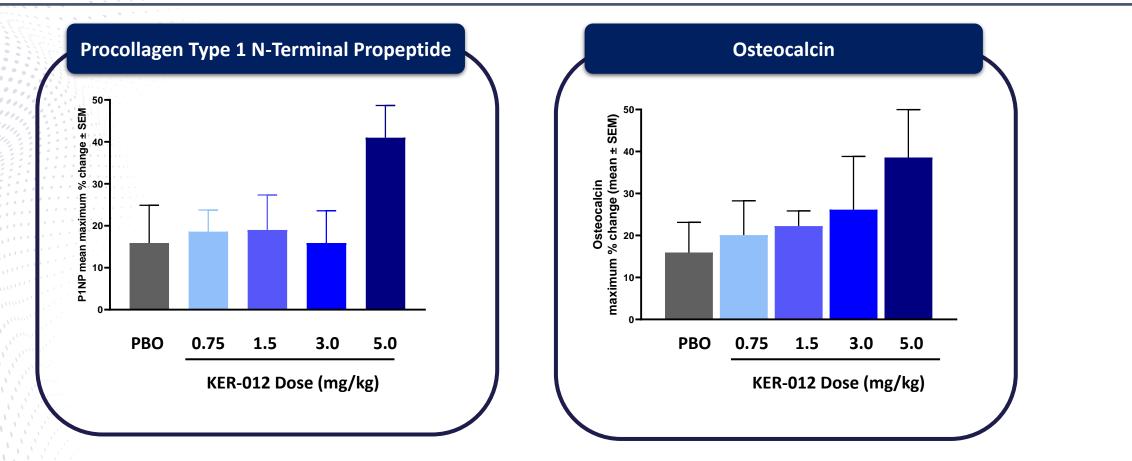


- Follicle stimulating hormone (FSH) secretion by the pituitary is controlled through signaling by the activin receptor and Gonadotropin Releasing Hormone (GnRH)
 - Approximately 50% of the FSH secretion is regulated via activin signaling and the other 50% by GnRH¹
 - Complete inhibition of activin signaling therefore would be expected to reduce FSH by ~50% in postmenopausal women, who have elevated FSH levels

KER-012 treatment resulted in suppression of FSH


- FSH suppression was observed in Part 1 (SAD) and Part 2 (MAD) of the study
- In Part 2, maximal suppression was observed at the 4.5 mg/kg dose level with 5 of 6 subjects achieving ≥ 40% reduction in FSH
- The magnitude of FSH reduction in the highest doses tested suggest that KER-012 treatment maximally inhibited activin signaling.

Dose-Dependent Increases in Serum BSAP with Maximal Effects Seen at Highest Doses of KER-012 Tested


- KER-012 is designed to inhibit activins and GDFs in bone, which potentially results in reduced SMAD 2/3 signaling and increased signaling of the bone morphogenetic protein (BMP) pathway (SMAD 1/5/9)
- The increased BMP signaling potentially promotes bone formation through a dual mechanism of activation/recruitment of bone forming osteoblasts and repression of osteoclasts, as demonstrated in preclinical studies¹
- Increases in BSAP, a marker of osteoblast activity, were observed starting at the lowest dose tested in this trial

Serum BSAP Increased After Administration of Each Dose of KER-012

Administration of KER-012 at a 28-day interval resulted in increases in BSAP after each dose in Part 2 (MAD), supportive of activation of osteoblast after each dose

Robust Increases in Additional Markers of Bone Formation Were Elicited by a Single Dose of KER-012 (Part 1)

KER-012 administration elicited increases in:

- Osteocalcin: indicative of late osteoblastic activity
- Procollagen Type 1 N-Terminal Propeptide: indicative of osteoblast activity and new bone formation

Summary

- KER-012 is a novel, investigational activin receptor type IIB ligand trap designed to correct SMAD 2/3 and SMAD 1/5/9 signaling imbalances in multiple degenerative disease states
 - Demonstrated ability to not only prevent, but reverse bone loss in multiple preclinical models of induced bone dysfunction
- In this Phase 1 study, KER-012 was generally well tolerated at multiple doses up to 4.5 mg/kg; adverse events generally mild
- Consistent with preclinical studies, no clinically meaningful changes in Hb or RBCs were observed
- FSH reduction is suggestive of maximum activin target engagement
- Robust changes in multiple markers of bone formation were observed, starting at the lowest dose (0.75 mg/kg) and maximized at the highest doses administered (4.5 and 5.0 mg/kg)

KER-012 has a tolerability profile suitable for further development in multiple disease states characterized by dysfunctional activin signaling, such as bone disorders and PAH